Silicon Double Balanced HMC ${ }^{\text {TM }}$ Mixer,

Features

- SOT-25 Low Cost Miniature Plastic Package
- 6.5 dB Typical Conversion Loss at 1550 MHz
- 7.6 dB Typical Conversion Loss at 1800 MHz
- +13 to +17 dBm LO Drive
- HMIC ${ }^{\text {тм }}$ Patented Process
- Silicon High Barrier Schottky Diodes
- DC - 500 MHz IF Bandwidth

Description and Applications

M/A-COM's MA4EX180H-1225T is a silicon monolithic $1300-1900 \mathrm{MHz}$ double balanced mixer in a low cost miniature surface mount SOT-25 package. The die uses M/A-COM's unique HMIC ${ }^{\text {TM }}$ silicon/glass process to achieve low loss passive elements while retaining the advantages of high barrier silicon Schottky diodes.

These mixers are well suited for high volume wireless and cellular applications where small size and repeatability are required. Typical applications include frequency conversion, modulation, and demodulation for receivers and transmitters in both portable cellular and base station applications.

Absolute Maximum Ratings ${ }^{1}$

Parameter	Maximum Ratings
Operating Temperature	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Incident LO Power	+20 dBm
Incident RF Power	+20 dBm

1. Exceeding these limits may cause permanent damage.

SOT-25 Package Outline (Topview)

PIN Configuration

PIN	Function	PIN	Function
1	GND	4	RF
2	GND	5	LO
3	IF		

Functional Schematic

Silicon Double Balanced HMC ${ }^{\text {TM }}$ Mixer,

Electrical Specifications: $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$

Parameter	Frequency Range	Test Conditions	Units	Min.	Тур.	Max.
Conversion Loss	$\begin{aligned} & 1550 \mathrm{MHz} \\ & 1300-1900 \mathrm{MHz} \end{aligned}$	$\begin{aligned} & \text { LO Drive }=+15 \mathrm{dBm} \\ & \mathrm{RF}=-10 \mathrm{dBm}, \mathrm{IF}=60 \mathrm{MHz} \end{aligned}$	dB dB		$\begin{aligned} & 6.5 \\ & 7.5 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 9.5 \end{aligned}$
L-R Isolation	$\begin{aligned} & 1550 \mathrm{MHz} \\ & 1300-1900 \mathrm{MHz} \end{aligned}$	$\begin{aligned} & \text { LO Drive }=+15 \mathrm{dBm} \\ & \text { RF Level }=-10 \mathrm{dBm} \end{aligned}$	$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$		$\begin{aligned} & 27.0 \\ & 18.6 \end{aligned}$	
L - I Isolation	$\begin{aligned} & 1550 \mathrm{MHz} \\ & 1300-1900 \mathrm{MHz} \end{aligned}$	$\begin{aligned} & \text { LO Drive }=+15 \mathrm{dBm} \\ & \text { RF Level }=-10 \mathrm{dBm} \end{aligned}$	dB dB		$\begin{aligned} & 28.9 \\ & 24.0 \end{aligned}$	
R - I Isolation	$\begin{aligned} & 1550 \mathrm{MHz} \\ & 1300-1900 \mathrm{MHz} \end{aligned}$	$\begin{aligned} & \text { LO Drive }=+15 \mathrm{dBm} \\ & \text { RF Level }=-10 \mathrm{dBm} \end{aligned}$	$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$		$\begin{aligned} & 15.8 \\ & 16.9 \end{aligned}$	
RF VSWR	$\begin{aligned} & 1550 \mathrm{MHz} \\ & 1300-1900 \mathrm{MHz} \end{aligned}$	$\begin{aligned} & \text { LO Drive }=+15 \mathrm{dBm} \\ & \text { RF Level }=-10 \mathrm{dBm} \end{aligned}$			$\begin{aligned} & 1.4: 1 \\ & 2.1: 1 \end{aligned}$	
IF VSWR	DC - 500 MHz	$\begin{aligned} & \text { LO Drive }=+15 \mathrm{dBm} \\ & \text { RF Level }=-10 \mathrm{dBm} \end{aligned}$			1.5:1	
Input IP3	$\begin{aligned} & 1550 \mathrm{MHz} \\ & 1300-1900 \mathrm{MHz} \end{aligned}$	LO Drive $=+15 \mathrm{dBm}$ $\mathrm{IF}=60 \mathrm{MHz}$	$\begin{aligned} & \mathrm{dBm} \\ & \mathrm{dBm} \end{aligned}$	$\begin{aligned} & 19.5 \\ & 17.5 \end{aligned}$	$\begin{aligned} & 23.0 \\ & 22.0 \end{aligned}$	
Input 1 dB Compression	$\begin{aligned} & 1550 \mathrm{MHz} \\ & 1300-1900 \mathrm{MHz} \end{aligned}$	LO Drive $=+15 \mathrm{dBm}$ $\mathrm{IF}=60 \mathrm{MHz}$	dBm dBm	$\begin{aligned} & 7.5 \\ & 7.5 \end{aligned}$	$\begin{aligned} & 8.5 \\ & 9.5 \end{aligned}$	
IF 1 dB Bandwidth			MHz	0	500.0	

- North America Tel: 800.366.2266 • Europe Tel: +353.21.244.6400
- India Tel: +91.80.43537383 - China Tel: +86.21.2407.1588

Visit ww.macomtech.com for additional data sheets and product information.
M/A-COM Technology Solutions Inc. and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice.

Silicon Double Balanced HMC ${ }^{\text {TM }}$ Mixer,

Typical Performance Curves (LO Drive $=+15 \mathrm{dBm}, \mathrm{RF}=-10 \mathrm{dBm}$, IF $=60 \mathrm{MHz}$)

Conversion Loss

RF and IF VSWR

Isolation

Third Order Intercept and Input 1 dB Compression Power

MACCM
Technology Solutions

Silicon Double Balanced HMC ${ }^{\text {TM }}$ Mixer,

SOT-25 Package Outline ${ }^{1,2}$

1. Dimensions do not include mold flash, protrusion or gate burrs which shall not exceed 0.0098 in (.25mm) per side. 2. Lead Coplanarity is $0.003(0.08)$ max.

SOT-25 Dimensions

Din	Inches		Millimeters	
	Min.	Max.	Min.	Max.
A		.122	2.70	3.10
B	.100	.118	2.54	3.00
C	-	.051	-	1.30
D	.063 REF.		1.60 REF.	
E	.032	.043	.80	1.10
F	.014	.020	.35	.50
G	.003	-	.08	-
H	.000	.006	.00	.15
J	.018 REF.		.45 REF.	

Ordering Information

Part Number	Package
MA4EX180H-1225T	Tape and Reel

